贝叶斯方法是由于先验引起的正则化效应,这是对统计学的统计推断的流行选择,该效应可抵消过度拟合。在密度估计的背景下,标准的贝叶斯方法是针对后验预测。通常,后验预测的直接估计是棘手的,因此方法通常诉诸于后验分布作为中间步骤。然而,最近的递归预测copula更新的开发使得无需后近似即可执行可拖动的预测密度估计。尽管这些估计器在计算上具有吸引力,但它们倾向于在非平滑数据分布上挣扎。这在很大程度上是由于可能从中得出所提出的Copula更新的可能性模型的相对限制性形式。为了解决这一缺点,我们考虑了具有自回归似然分解和高斯过程的贝叶斯非参数模型,该模型在Copula更新中产生了数据依赖于数据的带宽参数。此外,我们使用自回归神经网络对带宽进行新的参数化,从而将数据映射到潜在空间中,从而能够捕获数据中更复杂的依赖性。我们的扩展增加了现有的递归贝叶斯密度估计器的建模能力,从而在表格数据集上实现了最新的结果。
translated by 谷歌翻译
功能图是形状对应关系的有效表示,它提供了在形状对之间的实际函数的匹配。功能映射可以被建模为Lie Group $ So(n)$的元素为近等距形状。随后可以采用同步来强制在一组形状上计算的功能映射之间强制循环一致性,从而提高各个映射的准确性。有兴趣开发尊重$ SO(n)$的几何结构的同步方法,同时引入概率框架来量化与同步结果相关的不确定性。本文介绍了$ SO(n)$的贝叶斯概率推理框架,因为函数贴图的riemannian同步,通过同步执行功能贴图的最大-a-postiori估计,并进一步部署了riemannian马尔可夫链蒙特卡罗采样器以进行不确定性量化。我们的实验表明,限制了riemannian歧管$ SO(n)$的同步,从而提高了功能地图的估计,而我们的riemannian MCMC采样器提供了第一次不确定性量化结果。
translated by 谷歌翻译